Unfolding of a global integral for $GL_n \times GL_m$
Let \((\pi, V_\pi)\) and \((\pi^\prime, V_{\pi^\prime})\) be cuspidal, unitary, irreducible automorphic representations of \(GL_n(\mathbb{A})\) and \(GL_m(\mathbb{A})\) respectively. We assume \(m < n\). Let \(\varphi \in V_\pi\) and \(\varphi \in V_{\pi^\prime}\). To pair \(\varphi\) and \(\varphi^\prime\) suitably together, we first need to project \(\varphi\) correspondingly.
Let \(\psi\) be a additive continuous automorphic character of \(\mathbb{A}\). We can extend it to a character of \(N_n(\mathbb{A})\), the standard Borel subgroup of \(GL_n(\mathbb{A})\), in the standard way: \[\psi(u) = \psi\left(\sum_{i=1}^{n-1}u_{i,i+1}\right),\] for \(u = (u_{i,j}) \in N_n(\mathbb{A})\). Let \(Y=Y_{n, m}\) be the standard unipotent radical associated to the partition \((m+1, 1, \dots, 1)\) of \(GL_n\), i.e., \[Y=\left\{\left(\begin{array}{cc}I_{m+1}&*\\ 0&u\end{array}\right): u \in N_{n-m-1}\right\} \subset N_n.\] Let \(P_{m+1}\) be the mirabolic subgroup of \(GL_{m+1}\), then for \(p \in P_{m+1}(\mathbb{A})\) define \[\mathbb{P}^n_m \varphi(p) = |\det p|^{-\frac{n-m-1}{2}}\int_{Y(k)\backslash Y(\mathbb{A})} \varphi\left(y\left(\begin{array}{cc} p& \\ & I_{n-m-1} \end{array}\right)\right)\psi^{-1}(y) dy.\]
Now we can pair \(\varphi\) and \(\varphi^{\prime}\) in the following way: \[I(s; \varphi, \varphi^\prime) = \int_{GL_m(k)\backslash GL_m(\mathbb{A})} \mathbb{P}^n_m \varphi\left(\begin{array}{cc} h& \\ &1\end{array}\right)\varphi^\prime(h)|\det h|^{s-\frac{1}{2}}dh.\]