Rademacher functions
This post is my note for What is…? seminar on Rademacher function.
For a real number \(x\) in \([0, 1]\), let \((a_1(x), a_2(x), \cdots, a_n(x), \cdots)\) be its binary representation. That is to say, \[\begin{equation} x = \sum_{n=1}^\infty \frac{a_n(x)}{2^n}. \label{20170623-1} \end{equation}\]
For some \(x\), there might be two possible binary representation. Take \(\frac{1}{2}\) for example, it can be represented as \((1, 0, 0, \cdots)\) or \((0, 1, 1, \cdots)\). In this situation, we always prefer the former representation, in which all terms become \(0\) eventually.